AD-A141 186 NNTERACTIVE PROGRAMMING(U)> STANFORD UNIY CR DEPT_OF 11
COMPUTER SCIENCE 2Z MANNA DEC 83 AFOSR-TR-84-8297
AFOSR-81-08014

UNCLASSIFIED F/G 972 NL

BERENEEEN:

Lot WD A e A LD L g A LAY L oo Rt S I e e LM AR IR R A ALY AT & PAYLE | Aca B a i } Shacs o v iy 2ptn iy

%
-,‘\;
"
ik
¥
2
2

L £ 2

5 M
||||| A "
. = 1.8

———

'~ MICROCOPY RESOLUTION TEST CHART-——1
' mmmlw
A

sam;

.‘fg R T e T T T -., ."'\"'-" AR -,r- R A A \- TATOUN g
P « - q. .
1 - '+ 5

ol e .‘nn TN SN .;Mi. NN 'Cn.‘.':{-d_\\. 'E\K.\ﬂ\' '&

S

INTERACTIVE PROGRAMMING
by
Zohar Manna

Professor of Computer Science
Stanford University Stanford, CA 94305

Interim Scientific Report:

AD-A141 186

Air Force Office of Scientific Research DTIC
Grant AFOSR-81-0014 ’
Oct. 1, 1982 - Sept. 30, 1983 ELECTE

MAY 17 1984 @

Our research was concentrated on the following topics: B
1. Verification of Concurrent Programs: A Proof System ([1]).

A proof system based on temporal logic is presented for proving properties of concurrent pro-
grams. The system consists of three parts: the general uninterpreted part, the domain-dependent
part and the program-dependent part. In the general part we give a complete system for first-order
temporal logic with detailed proofs of useful theorems. This logic enables reasoning about general
time sequences.” The domain-dependent part characterizes the special properties of the domain
over which the program operates. The program-dependent part introduces program axioms which
restrict the time sequences considered to be execution sequences of a given program.

The utility of the full system is demonstrated by proving invariance, liveness and precedence
properties of several concurrent programs. Derived proof principles for these classes of propertxes
. are obtained which lead to compact representation of proofs.

Qo- 2. Temporal Proof System for General Languages ([2]).

< An abstract temporal proof system is presented whose program-dependent part has a high-level
Lu interface with the programming language actually studied. Given a new language, it is sufficient
==l to define the interface notions of atomic transitions, justice, and fairness in order to obtain a full
temporal proof system for this language. This construction is particularly usefil for the analysis of
concurrent systems. We illustrate the construction on the shared-variable model and on CSP. The
generic proof system is shown to be relatively complete with respect to pure first-order temporal

logic. .
8. Proving Precedence Properties: The Temporal Way ([3])

nnc FIL

We explore the three important classes of temporal properties of concurrent programs: in-
‘variance, liveness and precedence. We present the first methodological approach to the precedence
properties, while providing a review of the invariance and liveness propertics. The approach is
based on the unless operator U which is a weak version of the until operator U. For each class of
properties, we present a single complete principle. Finally, we show that the propertles of each
class are decidable over finite state programs.

Approved for public release ;

8‘ 05 l s z“ distributionunlimited, ,»~

IRRAPIRA ;AP

‘4

- ¥y v r_r;v/'.,'

PR

»

r"-.'

SO

-

RO
Ay 4y

4. Verification of Concurrent Programs: Adequate Proof Principles ([4]).

We present proof principles for establishing invariance, eventuality and until properties. The
methods for liveness are based on well-founded assertions and are applicable to both “just” and
“fair” computations. These methods do not assume a decrease of the rank at each computation
step. It is sufficient that there exists one process which decreases the rank when activated. Fairness
then ensures that the program will eventually attain its goal. In the finite state case the proofs
can be represented by diagrams.)

5. Synthesis of Communicating Processes from Temporal Specifications ([5],6]).

We apply Propositional Temporal Logic (PTL) to the specification and synthesis of the syn-

chronization part of communicating processes. To specify a process, we give a PTL formula that .

describes its sequence of communications. The synthesis is done by constructing a model of the
given specifications using a tableau-like satisfiability algorithm for PTL. This model can then be
interpreted as a program.

6. Special Relations in Program Synthetic Deduction ([7]).

Program synthesis is the automated derivation of a computer program from a given specifi-

_cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving

problem; the desired program is constructed as a by-product of the proof. We present a formal
deduction system for program synthesis, with special features for handling equality, the equivalence
connective, and ordering relations.

In proving theorems involving the equivalence connective, it is awkward to remove all the
quantifiers before attempting the proof. The system therefore deals with partially skolemized
sentences, in which some of the quantifiers may be left in place. A rule is provided for removing
individual quantifiers when required after tle proof is under way:

The system is also nonclausal; i.e., the theorem does not need to be put into conjunctive
normal form. The equivalence, implication, ¢ .d other connectives may be left intact.

7. The Logical Basis for Computer Programming ([8]).
This is an introductory textbook, divided into two volumes.

The first volume, subtitled Deductive Reasoning, describes several logical structures and
presents methods for the informal but rigorous proof of theorems (or properties) about these
structures. In this volume, we introduce the basic notions of propositional and predicate logic, and
theories with equality and with mathematical induction. We describe within theories with induc-
tion some of the most important structures of computer science, including the integers, strings,
trees, lists, sets, tuples (arrays), and sequences. We apply logical methods to establish in these
theories properties such as the correctness of algorithms for parsing (of strings) and sorting (of
tuples). The induction principles of the various theories are then unified into a single well-founded
induction principle. .

The second volume, subtitled Deductive Technigues, presents methods for the formal proof of

such theorems, oriented toward the development of computer theorem-proving systems. In this-

second volume, we apply the concepts of the first volume to develop more formal proof techniques.
We first describe an additional theory with induction, the theory of expressions and substitutions.
Within this theory, we describe the unification algorithm and prove its correctness. We then
introduce special logical techniques essential in theorem-proving systeins, such as skolemization and

-~ v
. :.:' LA A
W Y 4 N N

L tae
SN elh
E’.-Zi'u.

3

A 4
AN

0
.
Poe
PR

AR AN
* L]
RN

polanty We present a deductive system for describing formal proofs; this framework incorporates
the most useful logical techniques for theorem proving, including resolution, rewriting rules, and
proof by mathematical induction.

8. Reasoning About Digital Circuits ([9], [10]).

We present a formalism called tnterval temporal logic (ITL) that augments standard predicate
logic with time-dependent operators. ITL is like discrete linear-time temporal logic but can describe
time intervals. The behavior of programs and hagdware devices can often be decomposed into
successively smaller intervals of activity. State transitions can be characterized by properties
relating the initial and final values of variables over intervals. Furthermore, these time periods
provide a convenient framework for introducing quantitative timing details.

We presented the propositional and first-order syntax and semantics of ITL. We demonstrate
ITL’s utility for uniformly describing the structure and dynamics of a wide variety of timing-
dependent digital circuits. Devices considered include delay elements, adders, latches, flip-flops,
counters, random-access memories, a clocked multiplication circuit and the Am?2901 bit slice. ITL
also provides a means for expressing properties of such specifications. We examined such concepts
as device equivalence and internal states. Propositional ITL was shown to be undecidable although
useful subsets are of relatively reasonable computational complexity.

Accession For
NTIS (GRAXX

DTIC TAR
Unannouced 0
Jugtifienti-n.

By
Distribution/ -
Avallability (_2_9des

e —

Ot sl o S LD A SIS o ey TR T o L L fa Xt a7

Publications

[1]

[2]

3]
[4]

(5]

¢]

7l
(8]
[9]

Z. Manna, A. Pnueli, “Verification of Concurrent Programs: a Temporal Proof System,” Proc.
4th School on Advanced Programming, Amsterdam, Holland (June 1982), pp. 163-255.

Z. Manna, A. Pnueli, “How to Cook a Temporal Proof System for Your Pet Language,” Proc.
of the Symposium on Principles of Programming Languages, Austm, Texas (Jan. 1983), pp.
141-154

Z. Manna, A. Pnueli, “Proving Precedence Properties - the Temporal Way,” ICALP Confer-
ence, Barcelona, Spain (July 1983).

Z. Manna, A. Pnueli, “Adequate Proof Principles for Invariance and Liveness Properties of
Concurrent Programs,” Technical Report, Computer Science Department, Stanford University,
1982 (to appear in TOPLAS).

Z. Manna, P. Wolper, “Synthesis of Commumcatmg Processes from Temporal Specifications,”
Proc. of the Workshop on Logics of Programs (Yorktown Heights), N.Y., Springer-Verlag
Lecture Notes in Computer Science, 1981 (to appear also in the ACM Trans. on Programming
Languages and Systems, 1983).

P. Wolper (supervised by Z. Manna), “Synthesis of Communicating Processes from Temporal
Logic Specifications,” Ph.D. Thesis, Computer Science Dept., Stanford University (August
1982).

Z. Manna, R. Waldinger, “Special Relations in Program Synthetic Deductions,” Journal of A

the ACM (to appear, 1983).

Z. Manna, R. Waldmger, “The Logical Basis for Computer Progra.mmmg, 2 volumes, in
preparation.

Z. Manna, B. Moszkowski, “A Hm"d_ware Semantics Based on Temporal Intervals,” ICALP
Conference, Barcelona, Spain (July 1983).

{10] B. Moszkowski (supervised by Z. Manuna), “Reasoning about Digital Circuits,” Ph.D. Thesis,

Computer Science Department, Stanford University (July 1983).

R

D A 2 A AT Y RN

AT SON

" ."l

T ity

.

INTERACTIVE PROGRAMMING

by

Zohar Manna
Professor of Computer Science
Stanford University Stanford, CA 94305

Interim Report of Inventions:
Air Force Office of Scientific Research
Grant AFOSR-81-0014
Oct. 1, 1982 - Sept. 30, 1983

There are no patents or copyrights to report.

- el [l

Zohar Manna

b

&

1)

- T - -
(LAFUR L AN) ""‘ [k X [N YR
(I AR AN S NI T AR ,|
. . . A

2. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicadle) . . . P
Stanford University Air Force Office of Scientific Research
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Department of Computer Science Directorate of Mathematical & Information
Stanford CA - 94305 Sciences, Bolling AFB DC 20332
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL [9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (I applicebdis)
AFOSR NM AFOSR-81-0014
8c. ADORESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
NO.

Bolling AFB DC 20332 EL‘E;E/‘HF 2 ;0’(INOV

—— —
11. TITLE (Include Security Classification)

|__INTERACTIVE PROGRAMMING
12. PERSONAL AUTHOR(S)
h. Manna
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Dey) 15. PAGE COUNT
Interim emom 1/10/82 vo30/9/83.] DEC 83 5

18. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
GROUP SUB. GR.

|_FIELD

WY?HAC‘I’ tContinue on reverse if necessary and identify by dlock number,)

ring this period, research was concentrated on the following topics: (1) Verification

of concurrent programs: -a proof system \-'5‘ proof system based on temporal logic is pre-
sented for proving properties of concurrent programs.> (2) Temporal proof system for
general languages, - An abstract temporal proof system is presented whose program-

éféﬁ@ﬁdent part has a high-level interface with the programming language actually studied.
-33) Proving precedence propertiesg—the temporal way - The investigators explore the
three important classe f temporal properties of concurrent programs: invariance, live-~
ness and precedence. 4) Verification of concurrent programsf- adequate proof principles-
The investigators t-proof principles for estab‘lmn'lg"{nvariance, eventuality and
until propert:les.;(s) Synthesis of communicating processes from temporal specifications -
The investigators”apply Propositional Temporal Logic (PTL) to the specification and
synthesis of the synchronization part of communicating processes. (CONTINUED)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLassiFieo/uNLIMITED & same as mer. T oTic users O UHCLASSIFIED
220. NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE NUMBER 22c. OFFICE SYMBOL
tinclude Arco Code
Dr. Robert N. Buchal (0. : 767- 4939 N

........

I ik e R D SR A A N R R P ".1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ITEM #19, ABSTRACT, CONTINUED: (6) Special relations in program synthetic deduction -

. Program synthesis is the automated derivation of a computer program from a given—

‘ . specification.j}(?) The logical basis for computer programming - This is an introductory
: textbook, divided into two volumes; the first volume, subtitled Deductive Reasoning,
describes several logical structures and presents methods for’ the informal but rigorous
proof of theorems (or properties) about these structures. e second volume, subtitled
Deductive Techniques, presents methods for the formal proof{of such theorems, oriented
toward the development of computer theorem-proving systems. A (8) Reasoning about digital
circuits.— The investigators present a formalism called 'interval temporal logic' (ITL)
that a nts standard predicate logic with time-dependent operators.

UNCLASSIFTCIY

T e e Yo & L)

